	ANSWER KEY – CLASS 11 –PHYSICS – AT - 2 – SET 2 – 2023 – 24	
SL.NO	SECTION A	
1.	d. MLT ⁻³ and MLT ⁻⁴	1
2.	(a) 1 AU = 1.496 x 10 ¹¹ m.	1
3.	(b) simultaneously	1
4.	(d)1: 3	1
5.	(b) 30°	1
6.	(c) Going up with uniform velocity.	1
7.		1
8.	$(b)\frac{-1}{3},\frac{8}{3}$	1
9.	(c) var	1
10.	(c) Infinity	1
11.	(b) Y and η remain the same.	1
12.	(a) Strain	1
13.	c) If Assertion is true but Reason is false.	1

14.	c) If Assertion is true but Reason is false.	1
15.	a) If both Assertion and Reason are true and Reason is correct explanation of Assertion.	1
16.	a) If both Assertion and Reason are true and Reason is correct explanation of Assertion.	1
	SECTION B	
17.	SOLUTION. Here $\theta = 90^\circ - 30^\circ = 60^\circ$	1/2
	Horizontal velocity = $u \cos 60^\circ = 19.6 \text{ ms}^{-1}$ 19.6 19.6	1/2
	$u = \frac{19.0}{\cos 60^{\circ}} = \frac{19.0}{0.5} = 39.2 \text{ ms}^{-1}$	1/2
	:. Maximum height, $H = \frac{u^2 \sin^2 60^\circ}{2g} = \frac{(39.2)^2}{2 \times 9.8} \times \left(\frac{\sqrt{3}}{2}\right)^2 = 58.8 \text{ m}$	1/2
	OR SOLUTION. Here $\theta = 90^\circ - 30^\circ = 60^\circ$ Horizontal velocity = $u \cos 60^\circ = 19.6 \text{ ms}^{-1}$	1/2
	$\therefore \qquad u = \frac{19.6}{\cos 60^\circ} = \frac{19.6}{0.5} = 39.2 \text{ ms}^{-1}$	1/2
	Horizontal range, $R = \frac{u^2 \sin 2\theta}{g} = \frac{(39.2)^2 \times \sin 120^\circ}{9.8}$	1/2
	$=\frac{(39.2)^2}{9.8} \times \left(\frac{\sqrt{3}}{2}\right) = 135.8 \text{ m}$	1/2

18.	Diagram	1/
	Work done by an external force to stretch the spring a distance dx dw = F.dx= Fdxcoso = Fdx (applied force and displacement are in same direction)	
	To stretch the string from $x=x_1$ to $x=x_2$ work done on the system	
	$w = \int F dx$	
	$=\int_{x_1}^{x_2}kxdx$	1/2
	$w=rac{k(x^2)}{2}$	1/2
	this work done by the applied force is stored in the form of potential energy Hence the potential energy in a string stretched a distance x from its natural	1/2
	length is given by U = $\frac{kx^2}{2}$	
19.	Diagram	
	$v_1 = r_1 \omega_r$	1/2
	$v_2 = r_2 \omega$,	
	$v_3 = r_3 \omega, \dots$	
	K.E. of particles of mass m_1 is	
	$\frac{1}{2}m_1v_1^2 = \frac{1}{2}m(r_1\omega)^2 = \frac{1}{2}m_1r_1^2\omega^2$	1/2
	Similarly, K.E. of other particles of the body are :	
	$\frac{1}{2} m_2 r_2^2 \omega^2, \ \frac{1}{2} m_3 r_3^2 \omega^2 \dots$	
	∴ K.E. of rotation of the body	
	$= \frac{1}{2}m_1r_1^2\omega^2 + \frac{1}{2}m_2r_2^2\omega^2 + \frac{1}{2}m_3r_3^2\omega^2 + \dots$	1/2
	$= \frac{1}{2} (m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots) \omega^2$	
	$= \frac{1}{2} \left(\sum_{i=1}^{i=n} \frac{1}{2} m_i r_i^2 \right) \omega^2$	
	$=\frac{1}{2}$ I ω^2	
	<i>i.e.</i> , K.E. of rotation $=\frac{1}{2}I\omega^2$	1/2

20.	Definition	1
	Initial potential energy at earths surface is	
	$U_i = rac{-GMm}{R}$	
	Final potential energy at height $h = R$	1/2
	$U_f = rac{-GMm}{2R}$	
	As work done = change in PE	
	$\therefore W = U_f - U_i$	
	$=rac{GMm}{2R}$	1/2
21.	$\frac{500088}{\text{Strain}} = \text{Modulus of elasticity}$	
	Given depth if $= 3000 \text{ m}$, $p = 10 \text{ kg/m}$, $g = 10 \text{ ms}$	1/2
	$P = h\rho g = 3000 \times 10^{\circ} \times 10$ $= 3 \times 10^{7} \text{ Nm}^{-2}$	
	Bulk modulus = $-\frac{\Delta P}{\Delta P}$	1/2
	$\frac{\Delta V}{V} = -\frac{\Delta P}{P} = \frac{3 \times 10^7}{10^7} = 1.36 \times 10^{-2}$	1/2 + 1/2
	$V = B = 2.2 \times 10^{9}$	
	SECTION C	
22.	Yes, there are some physical quantities which have no dimensions but still have units. For eg., solid angle, angular velocity	1
		1/2

$[E] = [ML^2T^{-2}], [m]$	1/2
= $[M][1] = [ML^2T^{-1}], [G] = [M^{-1}L^3T^{-2}]$	
$\therefore \left[\frac{El^2}{m^5G^2}\right] = \frac{[ML^2T^{-2}][M^2L^4T^{-2}]}{[M^5][M^{-2}L^6T^{-4}]}$	
$= [\mathbf{M}^{\mathbf{o}} \mathbf{L}^{\mathbf{o}} \mathbf{T}^{\mathbf{o}}]$	1/2
As angle has no dimensions, therefore $rac{\mathrm{El}^5}{\mathrm{m}^5\mathrm{G}^2}$ has the same dimensions as that	
of angle.	1/2
OR	
We know that $P = rac{F}{A}$	
So, the dimensions of Pressure is : (LHS)	
$P = rac{[MLT^{-2}]}{[L^2]} .$	1/2
$P = [ML^{-1}T^{-2}]$	
Then let's go for the RHS :	
=hdg	
After converting into dimensions :	1/2
$= [L][ML^{-3}][LT^{-2}]$	
$= [L^2 L^{-3} M T^{-2}]$	1/2
$= [ML^{-1}T^{-2}]$	
Thus, it is clear that $LHS = RHS$.	1/2
(b) Thus, the above equation is dimensionally consistent.	

	A dimensional constant is a physical quantity that has dimensions and, has a fixed value. Examples of these constants include gravitational constants, electrostatic force constant.	1/2 + 1/2
23	 (a) (ii) In graph (a), There is a point (B) on the curve for which displacement is zero. So curve, (a) matches with (iiⁱ). x(m) 	1/2
		1/2
	(b) (iii)	1/2
	(c) (i) In graph (c), In this graph the slope is always negative, hence velocity will be negative or v < 0. Also x-t graph opens up, it represents positive acceleration. So curve (c) matches with (i ⁻).	1/2
		1/2
24.	(a) Ans: False. The net acceleration of a particle in circular motion is not always directed along the radius of the circle toward the centre. It happens only in the case of uniform circular motion.	1/2 1/2

26.	Velocity of pendulum bob in mean position	1/ 1/
	$v_1=\sqrt{2gh}=\sqrt{2 imes 10 imes 5 imes 10^{-2}}=1rac{m}{s}$	¹ / ₂ + ¹ / ₂
	when the bob picks up a mass 10^{-3} kg at the bottom, then by conservation	
	of liner momentum, the velocity of the coalesced mass is given by	
	$m_1v_1+m_2v_2=(m_1+m_2)V$	
	$10^{-2} imes 1 + 10^{-3} imes 0 = \left(10^{-2} ight) + 10^{-3()V}$	1/2
	or $V=rac{10}{11}m/s$	1/2
	if h' is the height risen by the combine mass, we have	
	$rac{1}{2}(m_1+m_2)V^2=(m_1+m_2)gh'$	1⁄2
	$\therefore h' = rac{V^2}{2g} = rac{\left(rac{10}{11} ight)^2}{2 imes 10} m = rac{5}{121} m = 0.413 m$	1/2
27.	(a)	
	Here, $h = 32 km$, R = 6400 km	½ + ½
	Now, $g' = g \left(1 - \frac{2h}{R} \right) = g - \frac{2hg}{R}$	/2 /2
	(or) $g-g^{\prime}=2rac{gh}{R}$	
	percentage decrease in weight	
	$=rac{mg-mg'}{mg} imes 100$	
	$=rac{g-g'}{g} imes 100=rac{2gh}{gR} imes 100=rac{2h}{R} imes 100$	1/2
	$= 2 \times \frac{32}{6400} \times 100 = 3\%$	1/2
	Acceleration due to gravity at a height h is	
	• g' = g[1 - 2h/R]	
	Acceleration due to gravity at depth h is	
	• g'' = g[1 - h/R]	
	From above two equations it's clear that acceleration due to gravity at depth h is more than that at height h	1/2
	(b) Therefore weight of the body will be more at depth of 1 km.	

		1/2
28.	: Mass of the cylinder is given as, $m=20kg$ Angular speed is given as, $\omega=100rad/s$ Radius of the cylinder $r=0.25m$	
	The moment of inertia of the solid cylinder can be given as: $I=rac{mr^2}{2}$	1/2
	Now, $\Rightarrow I = rac{1}{2} imes 20 imes (0.25)^2$ $\Rightarrow I = 0.625 kam^2$	1/2
	Kinetic energy can be given as: $K.E.=rac{1}{2}I\omega^2$	1/2
	$\Rightarrow K.E.=rac{1}{2} imes 6.25 imes (100)^2=3125J$	1/2
	Angular momentum can be given as, $L = L_{c}$	1/2
	$egin{aligned} & D = 100 \ & \Rightarrow L = 6.25 imes 100 \ & \Rightarrow L = 62.5 Js \end{aligned}$	1/2
	SECTION D	
29.	(I) (d) -0.99m/s (II) (d) -4v	1 1
	(iii) (b) 2 kgm/s	1
	OR	
	(a) 2mv	
		1
30.	(i) (b)A, as the slope of the graph of B is less than that of A	1
	(ii) (d) 10^{11} N/m ²	1
	(iii) c) tensile strength	
	(iv) (d) B, as it has less plastic region	1
	OR	1
	a) A, as it has more plastic region	

	SECTION E	
31.	Definition of elastic and inelastic collision Derivation of v1 and v2 (diagram) Conservation of linear momentum Conservation of kinetic energy	1+1 ½ ½
	Relation between v1, v2,u1 & u2	
	Steps for finding v1 or v2 Formula for v1 and v2	¥2 ¥2 + ¥2
	OR	
	. (i) Statement of the law of conservation of energy.	1
	Proof-diagram	1⁄2
	Proof of the steps ,Object at A, B & C	1+1+
	Graph.	1/2
		1
32.	 Statement of the law of conservation of angular momentum IT STATES THAT WHEN THE TOTAL TORQUE ACTING ON A RIGID BODY IS ZERO, THE TOTAL ANGULAR MOMENTUM OF THE BODY IS CONSERVED. SUPPOSE THE EXTETERNAL TORQUES ACTING ON A RIGID BODY DUE TO EXTERNAL FORCES IS ZERO. 	1
	• THEN $\tau = dL/dt = 0$ • Or I = constant • When $\tau = 0$, I = i ω = constant • i.e $i_1\omega_1 = i_2\omega_2$	1
	Any one example of conservation of angular momentum and explanation	1
		1
		1

	Angular momentum of a particle performing uniform circular motion	
	$L = I\omega$	
	Kinetic energy, $K = \frac{1}{2}\omega^2$	
	Therefore, $L = \frac{2K}{\omega^2} \omega = \frac{2K}{\omega}$	
	$\frac{\mathbf{L_1}}{\mathbf{L_2}} = \frac{\mathbf{K_1}\omega_2 \ \mathbf{L_1}}{\mathbf{K_2}\omega_1 \ \mathbf{L_2}} = 2 \times 2 = 4$	
	$L_2 = \frac{L}{4}.$	
	OR	
	Definition of term torque.	1 %
	SI unit – Nm	1/2
	ML ² T ⁻²	4.1/
	Derivation of torque with diagram	1 1/2
	For second hand = $T_s = 60 s$	
	$\omega_s = \frac{2\pi}{T_s} = \frac{2 \times 3.14}{60} = 0.105 \text{ rad/s}$	1 ½
	$v = r \omega = 10 \times 10^{-2} \times 0.105 = 1.05 \times 10^{-2} \text{ m/s} = 1.05 \text{ cm/s}$	
33.	Definition of acceleration due to gravity. Derivation of formula of acceleration due to gravity.	1
	Diagram	1/2
	$g = \frac{GM_e}{R_e^2} \& M_e = \frac{4}{3}\pi R_e^3 \rho$	
	$4 \pi GR_{\rho}$	_
	$\therefore g = \frac{1}{3} \xrightarrow{e_1} \rightarrow (3)$	1
	$g' = \frac{GM_e'}{(R_e - d)^2}$ & $M_e' = \frac{4}{3}\pi(R_e - d)^3\rho$	1/2
	$g' = \frac{4}{3}\pi\rho G(R_e - d) \rightarrow (4)$	

$$\frac{g}{g} = \frac{(R_e - d)}{R_e} \Rightarrow g' = g \left[1 - \frac{d}{R_e} \right]$$
Therefore, $F = mg = m \frac{GM}{R_e^2}$

$$\frac{F_{Mars}}{F_{Barth}} = \frac{m[GM/R_e^2]|_{Mars}}{m[GM/R_e^2]|_{Earth}}$$

$$\frac{1}{1/2}$$

$$\frac{F_{Mars}}{90kg} = \frac{(M_{earth}/9)}{(M_{earth})} \times \frac{(R_{Barth})^2}{(R_{Earth}/2)^2} = 4/9$$

$$\frac{1}{1/2}$$

$$\frac{F_{Mars}}{F_{Barth}} = 90 \times 4/9 = 40kg \int$$

$$\frac{1}{2}$$

$$\frac{OR}{R}$$

$$\frac{1}{1/2}$$
